IP address: 44.201.96.43
Continent Code: NA
Continent: North America
Country Code: US
Country: United States
Time Zone: America/New_York
Latitude: 39.0469
Longitude: -77.4903
Autonomous System Number: 14618
Organization Name: AMAZON-AES
Browser Agent: CCBot/2.0 (https://commoncrawl.org/faq/)

Internet access is the ability of individuals and organizations to connect to the Internet using computer terminals, computers, and other devices; and to access services such as email and the World Wide Web. Internet access is sold by Internet service providers (ISPs) delivering connectivity at a wide range of data transfer rates via various networking technologies. Many organizations, including a growing number of municipal entities, also provide cost-free wireless access and landlines.

Availability of Internet access was once limited, but has grown rapidly. In 1995, only 0.04 percent of the world's population had access, with well over half of those living in the United States, and consumer use was through dial-up. By the first decade of the 21st century, many consumers in developed nations used faster broadband technology, and by 2014, 41 percent of the world's population had access, broadband was almost ubiquitous worldwide, and global average connection speeds exceeded one megabit per second.

Speed

The bit rates for dial-up modems range from as little as 110 bit/s in the late 1950s, to a maximum of from 33 to 64 kbit/s (V.90 and V.92) in the late 1990s. Dial-up connections generally require the dedicated use of a telephone line. Data compression can boost the effective bit rate for a dial-up modem connection from 220 (V.42bis) to 320 (V.44) kbit/s. However, the effectiveness of data compression is quite variable, depending on the type of data being sent, the condition of the telephone line, and a number of other factors. In reality, the overall data rate rarely exceeds 150 kbit/s.

Broadband technologies supply considerably higher bit rates than dial-up, generally without disrupting regular telephone use. Various minimum data rates and maximum latencies have been used in definitions of broadband, ranging from 64 kbit/s up to 4.0 Mbit/s. In 1988 the CCITT standards body defined "broadband service" as requiring transmission channels capable of supporting bit rates greater than the primary rate which ranged from about 1.5 to 2 Mbit/s. A 2006 Organisation for Economic Co-operation and Development (OECD) report defined broadband as having download data transfer rates equal to or faster than 256 kbit/s. And in 2015 the U.S. Federal Communications Commission (FCC) defined "Basic Broadband" as data transmission speeds of at least 25 Mbit/s downstream (from the Internet to the user's computer) and 3 Mbit/s upstream (from the user's computer to the Internet). The trend is to raise the threshold of the broadband definition as higher data rate services become available.

The higher data rate dial-up modems and many broadband services are "asymmetric"—supporting much higher data rates for download (toward the user) than for upload (toward the Internet).

Data rates, including those given in this article, are usually defined and advertised in terms of the maximum or peak download rate. In practice, these maximum data rates are not always reliably available to the customer. Actual end-to-end data rates can be lower due to a number of factors. In late June 2016, internet connection speeds averaged about 6 Mbit/s globally. Physical link quality can vary with distance and for wireless access with terrain, weather, building construction, antenna placement, and interference from other radio sources. Network bottlenecks may exist at points anywhere on the path from the end-user to the remote server or service being used and not just on the first or last link providing Internet access to the end-user.

Network congestion

Users may share access over a common network infrastructure. Since most users do not use their full connection capacity all of the time, this aggregation strategy (known as contended service) usually works well, and users can burst to their full data rate at least for brief periods. However, peer-to-peer (P2P) file sharing and high-quality streaming video can require high data-rates for extended periods, which violates these assumptions and can cause a service to become oversubscribed, resulting in congestion and poor performance. The TCP protocol includes flow-control mechanisms that automatically throttle back on the bandwidth being used during periods of network congestion. This is fair in the sense that all users that experience congestion receive less bandwidth, but it can be frustrating for customers and a major problem for ISPs. In some cases the amount of bandwidth actually available may fall below the threshold required to support a particular service such as video conferencing or streaming live video–effectively making the service unavailable.

When traffic is particularly heavy, an ISP can deliberately throttle back the bandwidth available to classes of users or for particular services. This is known as traffic shaping and careful use can ensure a better quality of service for time critical services even on extremely busy networks. However, overuse can lead to concerns about fairness and network neutrality or even charges of censorship, when some types of traffic are severely or completely blocked.

Outages

An Internet blackout or outage can be caused by local signaling interruptions. Disruptions of submarine communications cables may cause blackouts or slowdowns to large areas, such as in the 2008 submarine cable disruption. Less-developed countries are more vulnerable due to a small number of high-capacity links. Land cables are also vulnerable, as in 2011 when a woman digging for scrap metal severed most connectivity for the nation of Armenia. Internet blackouts affecting almost entire countries can be achieved by governments as a form of Internet censorship, as in the blockage of the Internet in Egypt, whereby approximately 93% of networks were without access in 2011 in an attempt to stop mobilization for anti-government protests.

On April 25, 1997, due to a combination of human error and software bug, an incorrect routing table at MAI Network Service (a Virginia Internet service provider) propagated across backbone routers and caused major disruption to Internet traffic for a few hours.

About

Speedtest by Ookla, is a web service that provides free analysis of Internet access performance metrics, such as connection data rate and latency. It is the flagship product of Ookla, a web testing and network diagnostics company founded in 2006, and based in Seattle, Washington, United States.

Ookla, the company behind Speedtest, is the global leader in fixed broadband and mobile network testing applications, data and analysis. As a result of the test volume across all Speedtest platforms, Ookla has the most comprehensive analytics on worldwide internet performance and accessibility. Ookla transforms these billions of real-world tests into vital research tools. The company’s flagship enterprise product, Speedtest Intelligence, is used by ISPs, carriers, businesses, universities and government agencies alike who trust Ookla’s commitment to quality and neutrality.

The service measures the data throughput (speed) and latency (connection delay) of an Internet connection against one of around 11,000 geographically dispersed servers (as of August 2021). Each test measures the data rate for the download direction, i.e. from the server to the user computer, and the upload data rate, i.e. from the user's computer to the server. The tests are performed within the user's web browser or within apps. As of September 2018, over 21 billion speed tests have been completed.

Tests were previously performed using the Hypertext Transfer Protocol (HTTP) at Layer 7 of the OSI model. To further improve accuracy, Speedtest now performs tests via direct Transmission Control Protocol (TCP) sockets and uses a custom protocol for communication between servers and clients.

The site also offers detailed statistics based on test results. This data has been used by numerous publications in the analysis of Internet access data rates around the world.